A Water Demand Forecasting Model using BPNN for Residential Building

نویسندگان

  • Dongjun Suh
  • Sungil Ham
چکیده

This paper presents a residential water demand forecasting model using a back propagation neural network (BPNN) in the context of residential buildings in Korea. The water demand of a building demonstrates a highly complex and non-linear phenomenon reflecting such features as geographic and climatic and special types of buildings. We describe the impact of several potential determinant factors affecting water use in residential buildings in four different provinces in Korea. Empirical data sets consisting of water consumption retrieved from multiple residential buildings in Korea were evaluated to verify the performance evaluation. Our results show that the proposed model can successfully predict estimated outputs through the BPNN. The model we propose can used in decision making for the residential water management policy in Korea through the optimal estimation of residential water consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANN-based residential water end-use demand forecasting model

Bottom-up urban water demand forecasting based on empirical data for individual water end uses or micro-components (e.g., toilet, shower, etc.) for different households of varying characteristics is undoubtedly superior to top-down estimates originating from bulk water metres that are currently performed. Residential water end-use studies partially enabled by modern smart metering technologies ...

متن کامل

Selecting the appropriate scenario for forecasting energy demands of residential and commercial sectors in Iran using two metaheuristic algorithms

This study focuses on the forecasting of energy demands of residential and commercial sectors using linear and exponential functions. The coefficients were obtained from genetic and particle swarm optimization (PSO) algorithms. Totally, 72 different scenarios with various inputs were investigated. Consumption data in respect of residential and commercial sectors in Iran were collected from the ...

متن کامل

Estimation and Prediction of Residential Building Energy Consumption in Rural Areas of Chongqing

Energy simulation is a vital part of energy policy of a country, especially for a developing country like China where energy consumption is growing very rapidly. The present study has been conducted to simulate the total primary energy consumption in residential sector in rural areas in Chongqing by using macro and micro drivers including population size, number of households, persons per house...

متن کامل

Gated Ensemble Learning Method for Demand-Side Electricity Load Forecasting

The forecasting of building electricity demand is certain to play a vital role in the future power grid. Given the deployment of intermittent renewable energy sources and the ever increasing consumption of electricity, the generation of accurate building-level electricity demand forecasts will be valuable to both grid operators and building energy management systems. The literature is rich with...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015